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The effect of microcracking upon the 
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Microcracking--elasticity theories typically relate a decrement in elastic moduli to the 
number density, N, and the mean microcrack radius (a). In this paper, four 
microcracking-modulus theories are rewritten in terms of the macroscopic, observable 
parameters of Young's modulus and Poisson's ratio, eliminating the specific dependence 
on the difficult to measure, microscopic quantities N and (a). The rewritten 
microcracking elasticity theories are then compared to elasticity data on a variety of 
m icrocracked, polycrystalline ceramics. 

1. Introduction 
The elastic moduli of a body can be significantly 
affected by microcracks [1-8].  In extreme cases, 
the Young's modulus may drop to 10 or 20% of 
that observed for the nonmicrocracked material 
[1, 5-8] .  There are a number of theories that 
relate the mean microcrack radius, (a), and the 
number density, N, of microcracks to changes in 
elastic moduli. However, the microscopic 
parameters (a) and N are difficult to determine 
experimentally. In this paper, it is shown that the 
results for each of four such theories can be re- 
written in terms of the macroscopic variables of 
Young's modulus, Y, and Poisson's ratio, v, elimin- 
ating the explicit dependence on the microscopic 
quantities N and (a). These results are compared to 
available data on several ceramic oxides. In 
addition, the difficulties in making experimental 
measurements of (a) and N are briefly discussed. 

The geophysics literature contains a number of 
examples of an apparent correlation between 
changes in Young's, shear, or bulk modulus and 
changes in Poisson's ratio. In 1933, Zisman [9] 
noted that for a variety of naturally occurring 
rocks, those with a high Young's modulus com- 
monly had a high Poisson's ratio, while rocks with 
a low Young's modulus commonly had a low Pois- 
son's ratio. For rocks with initially low values of 
Young's modulus, Y, and Poisson's ratio, v, 

Zisman found that uniaxial compression increased 
both Y and v. On the other hand, if both Y and v 
were initially high, then uniaxial compression had 
little effect on either Y or v. For example, an 
increase in compressive stress from 112 to 560 kPa 
changed the v of Vermont Marble from 0.142 to 
0.209, while Y increased from 38.3 to 49.5 GPa. 
However, the same initial and final stress states for 
a diabase specimen left both v and Y essentially 
unchanged. As an explanation of this phenomenon, 
Zisman suggested that compression might close 
cracks in the rocks, resulting in a significant 
increase in the elastic constants measured under 
stress compared to those measured under lower 
stress. 

More recent work by Walsh includes similar 
data on the effect of pressure on the Poisson's 
ratio of Westerly granite [10]. It is now widely 
accepted in the geophysical literature that the clos- 
ing of cracks as a function of pressure can 
significantly alter the mechanical, thermal, and 
electromagnetic properties of rocks [ 10-21 ]. 

Pressure is just one parameter that can affect 
the number or size of microcracks in a brittle 
material. In ceramics, it has been shown that both 
grain size and thermal cycling can modify the 
crack population [1-8]. For ceramics, there has 
been relatively little investigation of the effect of 
microcrack number density on Poisson's ratio. 
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More importantly, there has been no direct com- 
parison of elasticity data for microcracked 
materials with the various models that attempt to 
predict how the bulk elastic constants change as a 
function of the microcracking state. This paper 
shows that the observed simultaneous decrease in 
Young's modulus and Poisson's ratio (that results 
from microcracking) is in general agreement with 
theoretical predictions. 

2. Experimental procedure 
All specimens were prepared from high purity 
powders. No second phases were observed in as- 
fired specimens of AI2Oa [8, 22, 23], Nb2Os [6, 7], 
Eu203 [2], or HfO2 [24, 25], to within the resolu- 
tion of X-ray diffraction. However, small amounts 
of MgO and Y203 are present in the YMgxCrx_xO3 
specimens [26]. 

All elasticity measurements were done by the 
sonic resonance technique [27-29]. The flexural 
and torsional frequencies of the prismatic speci- 
mens were used to calculate the Young's and shear 
moduli, according to the theory developed by 
Pickett [30] and Hasselman [31]. Equation 1 was 
used to compute Poisson's ratio, v' from the 
measured Young's modulus, Y, and shear modulus, 
G. 

Y 
u - 2G 1 (1) 

The data discussed here for AI2Oa, Gd203, 
HfO2 and YMgxCr>xO 3 were taken in room air, at 
approximately 23~ and atmospheric pressure. 
The measurements on Nb2Os and Eu203 were done 
as a function of temperature in a carbon resistance 
furnace at a pressure of less than 5 x 10 -storr 
[2,6,7] .  

The experimental uncertainties involved in 
sonic resonance measurements of Young's moduli 
and Poisson's ratio are about + 1% and -+ 10%, res- 
pectively [32, 33]. 

3. Results and Discussion 
3.1. Description of the 

microcrack-elasticity theories 
Walsh [10] was one of the first to model the 
changes in elastic moduli that occur in resporise to 
changes in the microcrack population within a 

specimen. Assuming a homogenous, isotropic body 
with a crack number density of N cracks per unit 
volume, the effective Poisson's ratio, v, for the 
cracked body was given by Walsh as 

where Vo is the Poisson's ratio of the uncracked 
body, and 2a is the average length of the crack. In 
terms of the effective modulus, Y, of the cracked 
and Y~ the Young's modulus of the uncracked 
body, Walsh found the simple linear relation 

" = (Y/Yo)vo 
or (2b) 

Y = Yo(v/vo). 
Three later theories that extend Walsh's results 

are those by Salganik [17, 18] and by Budiansky 
and O'Connell [19] and by Hasselman and Singh 
[34]. As the work by Hasselman is a modification 
of the Salganik theory, henceforth this work will 
be referred to as the Hasselman-Salganik theory�9 
As was the case for Walsh's model, each of the 
later models treats a homogeneous, isotropic body 
with a number density N of randomly oriented, 
circular cracks* of mean radius (a). It should be 
noted that while Walsh's model ignores crack inter- 
actions, the other three theories attempt to 
treat at least first-order interactions between 
cracks. 

For Y, ]1o, (a), v, Vo, and N defined as above, 
Salganik gives the relations 

Y = Yo I1 16(10--  3Vo)(l~v_2o)N<a)3_] 
45 (2 -- "o) ](3a) 

P -~ PO 
l - -  1 6 ( 3  - -  V o ) ( 1  - -  vg)N(a) 3 ] 

i 5 (2-----u~ ] (3b)  

while Budiansky and O'Connell give 

[ 1 6 ( 1 - -  v2)(lO-- 3v)e.J 
Y = Yo 1--  45 ( 2 - - v )  ' 

where the parameter e is given by 

e = N(a) 3 = 45(Uo-- u)(2--  u) 

Hasselman 
obtainf 

(4a) 

16(1 -- V2)[10Vo - (1 + 3uo)l(4b), 

modified Salganik's relations to 

*Salganik and Hasselman-Salganik treat only the case of circular cracks. Budiansky and O'Connell treat elliptical and 
rectangular cracks, with circular cracks being a special case of the elliptical cracks. 
~Although no derivation is presented for the Hasselman-Salganik equations [34], one can pass from the Salganik equa- 
tions to the Hasselman-Salganik relation by considering the form of the summation of a geometric series. That is, 
1 - - X + X  2 - + . . . = ( 1  +X)-~ forX< 1, and for X sufficiently small, l--X--~(1 +X)-I.  
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Y =  Yo [1 -I 

v = Vo [1-t 

16(10 - 3Vo)(1 _-_p~)N(a>3] -x 

- 4 ~ - -  Vo) ] (5a) 

16(3 -- Vo)(1--v~)N(a)a]-' 
15 (2 -- po) ] "(5b) 

3.2. Recasting the theories in terms of 
macroscopic variables only 

The expressions of Budiansky and O'Connell, 
Salganik, and Hasselman-Salganik can all be re- 
written without explicit dependence on N or (a). 
For the Budiansky and O'Connell model, merely 
substituting equation 4b into 4a gives 

3 )1 
r = go 1 [10Vo-- v(1 + 3Vo)]]" (6) 

For the Salganik Equations 3a and 3b, if one 
makes the ansatz 

16(3 - Vo)(1 -- v~)N(a) 3 
A s = , (7) 

15 (2 -- Vo) 

then substituion of Equation 7 into Equation 3b 
gives, upon solving for A s , 

As .=  (Uo--V]. (8) 

Using Equations 7 and 8, Equation 3a may then 
be rewritten as 

[ (lO--3Vo)(Uo--V)] (9) 
Y = Y0 1--  3(3--u0)Vo " 

Using the same ansatz as above yields Equation 
10 from the Hasselman-Salganik equations: 

[ (lO--3Vo)(Vo--V)]-l. (10) 
Y = }To 1 +  3(3--Uo)U 

Equations 2b, 6, 9 and 10 thus represent the 
results of the four modulus decrement-micro- 
cracking theories, but rewritten in terms of the 
macroscopic variables Y and v only. For 
convenience, these equations are rewritten below 
as Equations 10a to 10d. 

r = yo(v/uo) Walsh [10] (lOa) 

(10 -- 3u)(Vo-- p) ] r = ro 1 

Budiansky and O'Connell [19] (10b) 

[1_ 1 ,  (3 _ 
Salganik [17, 18] (10c) 
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(10 -- 3Vo)(Vo-- v)] -1 
Y = Yo 1 +  3(3--Vo)V 

Hasselman-Salganik [34] (lOd) 

For the four models discussed here, Equations 
10a to 10d demonstrate that the effect of micro- 
cracks on a material's elastic constants can be 
expressed without explicit knowledge of either the 
crack number density, N, or the mean crack size 
(a). While each model assumes the existence of a 
crack population within the material, the 
researcher is not obliged to provide a value for N 
(or more properly, the product N(a) a, where (a) is 
the mean crack radius) before comparing the 
theories with experiment. This is important, as 
there are many complications in estimating N, one 
of which is the fact that when a specimen is pre- 
pared for microscopic examination, by whatever 
means, the specimen surface is almost invariably 
damaged. It is difficult to sort out such damage 
from the inherent crack population. Also, the 
stress state at the surface of a body is different 
than in the bulk, so it is not obvious that a 
statistically meaningful sampling of the cracks will 
actually intersect the surface. In addition, the frac- 
tion of the total population of cracks that appear 
at the specimen surface may be a function of the 
microcrack density, the specimen porosity, and 
perhaps a host of other variables. The same un- 
certainties in estimating N apply to the estimation 
of the mean crack radius (a); that is, it is difficult 
to guarantee that one has a statistically valid 
sampling of the crack sizes existing within the 
body. These problems may, at least in part, be 
overcome by small-angle neutron diffraction 
studies now being done at the National Bureau of 
Standards [35]. However, there are currently con- 
siderable uncertainties involved in experimental 
values of both N and (a), which are thus com- 
pounded in the product N(a) 3. 

3.3. Intercomparison of the 
microcracking-elasticity theories 

When expressed in terms of macroscopic variables 
Y and p, the predictions of the four micro- 
cracking-elasticity models discussed here (Equa- 
tions 10a to 10d) differ relatively little (Figs. la 
and b). Walsh predicts a linear drop in Y/Yo, the 
normalized Young's modulus, as a function of 
decreasing V/Uo, the normalized Poisson's ratio. 
Each of the three other theories (Budiansky and 
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Figure 1 (a) Theoretical predictions of the microcracking-elasticity theories of Walsh, Budiansky and O'Connell, 
Salganik, and Hassehnan-Salganik, as rewritten in terms of normalized Young's modulus, Y/Yo, and normalized 
Poisson's ratio, v/v o (Equations 10a to 10d). (b) Details of the microcracking-elasticity theories for 0.5 ~ v/v o <~ I. 

O'Connell, Salganik, and Hasselman-Salganik) 
yield a nearly linear Young's modulus-Poisson's  
ratio behaviour that has the Walsh theory as an 
upper bound over the entire range of V/Vo. 

It should be noted that Equations 10b to 10d 
cannot be rewritten explicitly in the form 

I"/I1o = f (~ /Vo) ,  

where f (v /Vo)  is a function of  V/Vo only. However, 
if one assigns a particular value to Vo, then the 
Y/Yo against V/Vo behaviour can be determined. For 
example, Figs. la and b are plotted for the special 
case of  Vo = 0.25. Nevertheless, the modulus-  
Poisson's ratio behaviour is only a very weak func- 

tion of  the magnitude ofvo. If Figs. la and b were 
replotted for Vo anywhere in the range 0.10 ~< Vo ~< 
0.40 (which includes the vo values of  essentially all 
brittle materials), the replotted figures would, on 
this scale, be nearly indistinguishable from the 
present figures. Thus, to a very good approxima- 
tion, Figs. I a and b describe the predictions of  the 
four microcracking-elasticity theories, independ- 
ent of  the choice of  Vo. 

The modulus-Poisson's  ratio predictions of  the 
four microcracking-elasticity theories also show a 
strict ordering over the entire range of  V/Vo. lf, for 
convenience, we denote the normalized Young's 
modulus and Poisson's ratio as 
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Figure 1 Continued. 

Y* = Y/Yo 

P* ~ P/PO, 

then the ordering relation may be expressed as 

YWalsh ~ ~Budiansky and O'Connen 

> y* * 
Hasselman--Salganik ~ Ysalganik 

for any v*, where 0 < v * <  1. At v*= 1 (where 
v = Po and no microcracking has occurred) all 
theories give Y* = 1. 

From Fig. l ,  it is also evident that  

YHasselman--Salganik" For  YBudiansky and O'Connell ~ * 
0.5 ~< v* <~ l ,  * exceeds YBudiansky and O'Connell 
Y~Ia~selman--Salganik by not  more than about 

3 7 0 6  

0.5%, and for 0.05 ~< v* ~< 1, the two theories still 

agree to within about 1.5%. 
Since it does not treat crack interactions, 

Walsh's linear model applies to quite dilute 
systems of microcracks, where the number of  
microcracks per unit volume is small and hence 
V/Vo-+ 1. However, the Walsh model does offer a 
surprisingly good approximation of the three other 
theories, each of  which do include crack inter- 
action effects. This demonstrates that crack inter- 
action has a relatively minor effect on Y*, at least 
for the theoretical forms presented by Budiansky 
and O'Connell, Salganik, and Hasselman-Salganik.  
For each of  these three theories the form of the 
crack interaction, however, is essentially that of  a 
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Figure 2 Young's modulus, Y, plotted against Poisson's ratio, v, for microcracked polycrystalline Gd203 [22]. Elasticity 
data represent measurements at room temperature on nine specimens having various grain sizes. The solid curve repre- 
sents theoretical predictions of the Budiansky and O'Connell equations, written in terms of Y and v. The error bars 
represent the _+ 10% relative experimental error in determining v. 

first-order per turba t ion  analysis, so that  the crack 

in te rac t ion  calculations are probably  no t  str ict ly 

rigorous for very high number  densities o f  micro- 

cracks ( that  is, for v* -+ 0). 

3.4. Comparison with exper iment  
In Figs. 2 to 6, the exper imenta l  elast ici ty data for 

a number  o f  microcracked  ceramic oxides are com- 

pared to the theore t ica l  curves for the same mater- 

ials. The data presented here were in ten t iona l ly  

selected so that  they  would  represent  the fol lowing 

three categories o f  mic roc rack ing-e la s t i c i ty  data: 

(a) microcracking due to thermal  expansion 

anisotropy,  where the elast ici ty measurements  are 
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Figure 3 Young's modulus, Y, plotted against Poisson's ratio, u, for five microcracked polycrystalline HfO~ specimens, 
having grain sizes of ~ 2 to 16/~m [24, 25 ]. The solid curve represents theoretical predictions of the Budiansky and 
O'Connell equations, written in terms of Y and v. The error bars represent the _+ 10% relative experimental error in 
determining u. 
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Figure 4 Young's modulus, Y, plotted against Poisson's ratio, u, for a single mic~ocracked polycrystalline Nb 203 speci- 
men for a single temperature cycle between room temperature and ~ 1050 ~ [6, 7]. The solid curve represents the 
theoretical predictions of  Budiansky and O'Connell, written in terms of Y and u. The error bars represent the _+ 10% 
relative experimental error in determining v. 

made  as a func t ion  o f  grain size at a f i xed  tempera-  

ture; (b )  microcracking  due to  thermal  e x p a n s i o n  

an i so t rop y ,  where  the e las t i c i ty  measurement s  are 

made  as a f u n c t i o n  o f  temperature  at a f ixed  grain 

s ize;  and (c )  microcracking  due to  a phase trans- 

format ion ,  where  e las t ic i ty  measurements  are per- 

formed  at r o o m  temperature ,  and the microcrack 

state o f  a spec imen  is contro l led  through  the t ime 

and temperature  o f  a thermal  anneal .  

For all three categories  o f  microcracking  data, 
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Figure 5 Young's modulus, Y, plotted against Poisson's ratio, u, for a single polycrystalline, microcracked Eu20 a speci- 
men for a single temperature cycle between room temperature and ~ 1160~ [2]. The solid curve represents the 
theoretical predictions of Budiansky and O'Connell, written in terms of Y and v. The error bars represent the +- 10% 
relative experimental error in determining u. 
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Figure 6 Young's modulus, Y, plotted against Poisson's ratio, v, for ten polycrystalline, microcracked YMgxCG_xO a 
specimens [36]. Here the room temperature Y and v values are varied through thermal anneals above or below the 
1100~ phase transition temperature. The solid curve represents the theoretical predictions of Budiansky and O'Connell, 
written in terms of Y and v. The error bars represent the + 10% relative error in determining u. 

the observable, macroscopic parameters Y and v 
are plotted% (Figs. 2 to 6). In each case, one can 
view the simultaneous decrease in Y and u as a 
result of an increase in the crack number density 
N, or mean microcrack radius (a), although the 
underlying microscopic parameters N and (a) are 
not explicit ly measured nor do they explicitly 
appear in the rewritten forms of  the theories 
(Equations 10a to 10d, Section 3.2). 

The predictions of  each of  the four theories 
differ very little, especially over the range of v* 
and Y* acually seen in the data, so that only the 
curves corresponding to the predictions of  
Budiansky and O'Connell are plot ted here. For 
each material, Table I lists the particular Y0 and Vo 
values used to determine the upper terminus of the 
theoretically predicted line. A different choice of  
1Io and Vo would thus move this upper endpoint,  
but calculations show that the slope of  the predic- 
ted line would remain essentially constant for 
small changes in Yo and v o. The greater uncertainty 
involved in determining Poisson's ratio, as com- 
pared to Young's modulus, has implications 'in the 
correspondence of  the theory with the data. (As 

discussed in the experimental  procedure, the 
experimental  uncertainty for the Young's modulus 
and Poisson's ratio values are -+ 1% and + 10%, res- 
pectively.) If the microcracking-elas t ic i ty  theories 
are at least approximately  correct, then one might 
expect there to be some probabil i ty for the data to 
be displaced horizontal ly (in the direction of  the v 
axis for Figs. 2 to 6) due to the significant uncer- 
tainty in v0. 

3.4. 1. Microcrack density as a funct ion o f  
grain size 

Figs. 2 and 3 show room temperature elasticity 
data for HfO2 [24, 25] and Gd203 [22] specimens 
of varying grain size. Both HfO2 and Gd203 micro- 
crack due to thermal expansion anisotropy, so that 
above a critical grai n size w both materials micro- 
crack. Fig. 2 represents a grain size range of  ~ 2.3 
to 16 #m for the HfO2 data, and Fig. 3 includes a 
range of  15.5 to 39 ~m for the Gd203. Although 
the grain sizes are not explicit ly shown (Figs. 2 
and 3), each data point  in the two figures corre- 
sponds to a specimen of  a given grain size having a 
particular Y and v. For both materials, the highest 

SThe Young's modulus and Poisson's ratio was, for all of the data, corrected for volume fraction porosity [4]. Most 
specimens had volume fraction porosities ~< 0.05 [2, 6, 7, 22, 24, 25, 36], so that the magnitude of the porosity correc- 
tion was not generally large. /2 

w experimentally determined critical grain size for the onset of microcracking is 2/~m for HfO 2 [24, 25] and 14 #m 
for Gd~O 3 [221. 
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TABLE I Empirically determined values of nonmicro- 
cracked, theoretically dense Young's modulus, Yo, and 
Poisson's ratio, u 0 

Material Y0 (GPa) v o Reference 

HfO 2 283.6 0.30 [24, 25] 
Gd203 150.3 0.28 [37] 
Nb:O 5 153.4 0.31 [6, 7] 
Eu:O 3 147.7 0.32 [2] 
YMgxCrl_xO 3 280.0 0.28 [36] 

moduli and Poisson's ratio occur for the smallest 
grain size, with both Poisson's ratio and modulus 
decreasing with increasing grain size. 

Although all of  the Gd203 specimens (Fig. 2) 
were sintered, several of  the HfO2 specimens (Fig. 
3) were hot pressed. The processing mode may 
affect the relation between theory and 
experiment, since each of  the four microcracking- 
elasticity theories discussed here assumes randomly 
oriented microcracks. These theories are thus 
applicable to microcracks in polycrystalline bodies 
having randomiy oriented grains. The localized 
microcracking stresses (due to thermal expansion 
anisotropy or phase transitions, for example) 
would presumably result in randomly oriented 
cracks in polycrystailine materials such as sintered 
ceramics, where the grains themselves are ran- 
domly oriented. Hot-pressed materials, on the 
other hand, can exhibit some degree of  texturing 
or preferential grain orientation. Microcracks 
occurring in such materials might also be preferen- 
tially oriented, and thus the discrepancy between 
the data and the theories of Walsh, Budiansky and 
O'Connell, Salganik, and Hasselman-Salganik 
should increase as the extent of texturing in a 
given specimen increases. Thus, possible variations 
in the degree of  texturing due tO hot-pressing may 
be related to at least some of the scatter in the 
HfO2 data �82 (Fig. 3). 

Analytical expressions do exist for the Young's 
modulus and Poisson's ratio for bodies having a 
non-random distribution of  microcracks, but such 
theories typically assume a spatial distribution in 
which all the microcracks are parallel [20, 21]. 

This would correspond to an extreme in texturing, 
analogous to the highly oriented structure of  
prolytic graphite, for example. A microcracking- 
elasticity theory appropriate for hot-pressed 
materials would have to treat the intermediate 
regime between the two extremes of completely 
random microcrack orientation and fully parallel 
microcrack alignment. 

Despite possible problems with texturing in the 
Hf02 specimens, the data for both Gd203 and 
Hf02 fit the predicted trend reasonably well. 

3.4.2. Microcrack density as a function o f  
temperature 

Figs. 4 and 5 give elasticity data for Nb20s [6, 7] 
and Eu203 [2], both of  which microcrack due to 
thermal expansion anisotropy ~. Thus the micro- 
crack state (and hence Y and v) for a single speci- 
men can be varied by thermal cycling between 
room temperature and some elevated temperature. 
Heating from room temperature heals microcracks 
at sufficiently high temperatures [4], and subse- 
quent cooling reopens microcracks [4-8] .  

The healing and reopening of microcracks 
results in a hysteresis in both the Young's 
modulus-temperature and the Poisson's r a t io -  
temperature curves [6-8] .  The theoretically pre- 
dicted trends again correspond relatively well to 
the data for thermally cycled Nb2Os and Eu203. 
The apparent systematic shift in the Eu203 data to 
the right of  the theoretical curve by an additive 
Poisson's ratio factor of  about 0.015 may result 
from an error in determining v0 for Eu203, since 
Y0 and u0 determine the upper terminus of the 
theoretical curve. 

3.4.3. Microcrack density as a function o f  
annea/ time and temperature 

Fig. 6 shows room temperature elasticity data for 
sintered YMgxCrl-xO3 (with x = 0.05 or 0.02) 
specimens having a grain size o f  approximately 6/~m 
and a volume fraction porosity of  ;"0.05. These 
specimens microcrack due to an apparent phase 
transition in the neighbourhood of  1100 ~ C [36] t .  

�82 degree of texturing of the hot-pressed HfO 2 specimens was not determined [24, 25]. 
*Both specimens were sintered. The Nb 20 s specimen had a volume fraction porosity of about 0.11 and a grain size of 
approximately 20 tzm [6, 7]~ The Eu203 specimen had a volume fraction porosity of ~ 0.05, and while the average grain 
size was not determined, the specimen's grain size is presumably above the 8.0 ~m critical grain size for Eu~O 3 [2]. 
tHigh-temperature X-ray measurements, differential thermal analysis, and extensive elasticity data all indicate the 
presence of a phase transition at about 1100 ~ C for YCrO 3 and YMgxCrl_xQ [36]. Although YCrO 3 and YMgxCrl_xO3 
(for x ~< 0.05) are distorted perovskites at room temperature, the high-temperature crystallographic form has yet to be 
established. Thus the existence of a high-temperature phase transition at 1100~ must be considered somewhat tenta- 
tive until the exact high-temperature crystallographic form is documented. 
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YMgCrl_xO 3 sintered in forming gas at about 
1700~ C shows an anomalously low Young's modu- 
lus (i.e. ~120GPa)  in the as-sintered state. 
Annealing at temperatures in the range of 900 to 
1080~ C invariably causes the Young's modulus to 
increase rapidly with time, and then level off at a 
steady state value of ~ 260 GPa, while annealing 
above 1100 ~ C, and subsequently coofing to room 
temperature always causes the modulus to drop 
back down to the as-sintered value. By adjusting 
the time and temperature of the anneal, inter- 
mediate microcrack states may be obtained. 

Mthough all of the microcracking theories and 
data have been presented in terms of the Young's 
modulus, Y, and Poisson's ratio, v, equations simi- 
lar to Equations 10a to 10d can be found relating 
microcrack behaviour to any pair of the following 
parameters: Y, v, G, and B, where B is the bulk 
modulus and G is the shear modulus [38]. Thus, 
given the proper data, one could depict the effect 
of microcracking on a specimen by a plot of Y 
against G, or B against v, for example. 

4. Conclusions 
The results of the microcracking-modulus decre- 
ment theories by Walsh, Budiansky and 0'Connell, 
Salganik, and Hasselman-Salganik can all be writ- 
ten in terms of a pair of macroscopic variables 
(here Young's modulus and Poisson's ratio was 
used). This eliminates the explicit reference to the 
mean microcrack radius, (a) ,  and the crack number 
density, N, so that each theory can be expressed in 
terms of macroscopic, observable quantities. 

Elasticity data for several microcracked ceramic 
oxides were found to be in general agreement with 
the trends predicted theoretically. The data were 
selected so that the microcracking state varied as a 
function of (a) grain size at a fixed temperature, 
(b) temperature, at a fixed grain size, or (c) time 
and temperature of anneal. Data types (a) and (b) 
included materials that microcrack due to thermal 
expansion anisotropy, while data type (c) is per- 
tinent to materials that undergo a phase transition 
that induces microcracking. In order to compare 
with the theoretical predictions of the micro- 
cracking-elasticity data, all the data were plotted 
in terms of Young's modulus to Poisson's ratio. 

Each of the four models discussed here give 
very similar results for the predicted Young's 
modulus-Poisson's ratio behaviour of a cracked 
specimen. Walsh predicts a strictly linear dropoff 
in modulus as a function of Poisson's ratio, while 

the other three models predict a slightly lower 
modulus (than does Walsh) for a given Poisson's 

ratio. 
To a very good approximation, the models of 

Budiansky and 0'Connell and of Hasselman- 
Salganik give identical results over the entire range 
of Y*, the normalized Young's modulus, and v*, 

the normalized Poisson's ratio. Each of the four 
theories, however, must b e  regarded as only 
approximate for very high microcrack number 
densities where both Y* and v* will tend to zero. 
None of the four theories discussed here treat 
either second-order crack interaction effects, or 
(more importantly) microcrack link-up, although 
both of the effects should probably be included in 
theories that attempt to deal with very high micro- 
crack densities. The assumptions of the Walsh 
theory, in particular, are really only appropriate 
for dilute crack systems (v*~  1), where crack 
interactions can be ignored. Also, each of the 
theories (Walsh, Budiansky and O'Connell, 
Salganik and Hasselman-Salganik) assumes 
randomly oriented microcracks, so none of these 
models is likely to be entirely correct for a highly 
textured material, where the microcracks are 
preferentially oriented. 
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